Micronor

MR340 Incremental Controller for MR340__ Series Sensors

Part no.: MR340 Incremental Controller for MR340__ Series Sensors

Key Features

• 100% passive sensing design – no electronics whatsoever

• Linear and rotary sensor configurations

• Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres

• Immune to EMI and RFI

The MR340-1 DIN Rail Mount Controller is the active optical and electrical interface for the MR340 Series ZapFREE Fiber Optic Incremental Encoder System. The system is an innovative all-optical design immune to any electromagnetic interferences such as magnetic fields, lightning, voltage, and other harsh environment conditions.
As the incremental code passes through an MR34X Sensor’s internal optical pick-up, the phase output of two
light beams creates the classical A/B quadrature signals accessible via the controller’s electrical interface.
The controller keeps track of position and also calculates the RPM and speed of the connected encoder Both position and speed can be read via RS485 Modbus RTU serial interface, USB, SSI or analog output. The analog output can be configured for either ±10V or 4-20mA output.

Call us for more info at 856-727-9500

"*" indicates required fields

Hi, My name is

and I’m interested in the

You can reach me by email at

or phone at

Message

This field is for validation purposes and should be left unchanged.
You may also be interested in:

Micronor

MR343 MRI Safe Incremental Linear Sensor

  • Non-metallic construction makes the sensor entirely MRI safe
  • 0.1 mm positional resolution
  • Inherently Safe, Simple Mechanical Device
  • Immune to EMI and RFI

Micronor

Micronor MR430 Fiber Optic Encoder

  • 100% passive sensing design – no electronics whatsoever
  • Linear and rotary sensor configurations
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI

Micronor

MR348 MRI-Safe Rotary Incremental Encoder

  • 100% passive sensing design – no electronics whatsoever
  • Up to 1.25" through hollow design
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI

Micronor

MR344 Hollow Shaft Incremental Fiber Optic Encoder

  • 100% passive sensing design – no electronics whatsoever
  • Up to 1.25" through hollow design
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI
Blog:

PIPS Positek Inductive Position Sensing Technology

With the increasing sophistication of electronic controls for mechanical systems to provide both accuracy and flexibility of control, there is more demand for durable, accurate and easy to use displacement sensors. Customers are increasingly concerned about reliability, durability and the associated replacement costs of sensors. They also want sensors that can be easily connected and mounted.

Tiny Tech, Big Impact: Rotary Encoders Are a Critical Link the Agrobot Revolution

A recent GlobalData report highlights the impressive growth of the robotics industry in agriculture (reaching $218 billion by 2030), a key component behind this revolution often goes unnoticed: the rotary encoder. These unsung heroes convert rotational motion into precise electrical signals, playing a vital role in ensuring the smooth, accurate movements of agricultural robots.

POSITAL UCD…H200 Through-hole Encoder

Over the past 15 years Everight Position has worked with a lot of unique sensors. But one of our favorites is the POSITAL UCD…H200. When looking back there are two things that make this sensor so special.

Why Holistic Encoders are More Accurate

All absolute rotary encoders have a rotor which is attached to the rotating shaft and a stator which is attached to the housing holding the shaft. The interaction of these two components produces a measure of the shafts rotational angle. The most important parameters of absolute rotary sensors are resolution, accuracy and tolerance to misalignment of the rotational axes.